Skip to content

Arthur H. Robinson: A Look at a Career

October 15, 2009

This past March, I gave a talk at the AAG’s annual meeting based on a paper I wrote reviewing the work of Arthur H. Robinson and the evolution of American academic cartography in the twentieth century. Below is the abstract and paper, including images of cartographic works by Robinson presented during the talk.


The quantitative revolution in the social sciences and the increasing amount of geospatial information available in the second half of the twentieth century required the development of more objective and accurate cartographic processes, and Arthur H. Robinson played a crucial role in that development. I attempt to observe this development specifically by examining Robinson’s cartographic works and related writings over the span of his career from 1940 to 1980. An examination of these works reveals a re-imagining of how maps are both composed and interpreted, simultaneously laying the groundwork for the revolution in geographic information science yet to come.

Arthur H. Robinson: A Look at a Career

At the beginning of his first book, The Look of Maps, Arthur H. Robinson placed a quote from that weathered statesman of American geography, William Morris Davis: “It is just as important to study the proper and effective use of various forms of graphic presentation, as it is to study the values of different methods, treatments, grades, and forms of verbal presentation” (quoted in Robinson, 1952, v).  It is fitting that this quote be placed here, as the book would mark a beginning of a lifelong intellectual pursuit on Robinson’s part to do just that—to bring the graphic representation of geo-spatial knowledge under a more objective scrutiny in a way that had not been seen in the U.S. prior to that point.  Just as importantly, invoking W.M. Davis at the onset of this pursuit underscored something else—the intention to keep cartography firmly placed in the mainstream of American academic geography.  Robinson and his colleagues were poised to revolutionize cartography, to wrest it from antiquated clichés and methods and make it serviceable to the demands of the new geography of the twentieth century.  This new geography, like all the social sciences, emerged in the post-war era to embrace the quantitative revolution.  The Second World War impacted cartography in similarly profound ways, if not more so.  Robinson’s experiences in producing maps for the war effort would prove to be a lasting formative experience; he would ultimately devote much of his career responding to the nearly overwhelming challenges of thematic map design and analysis he encountered as head of the Map Division of the Office of Strategic Services.

The field of cartographic visualization we have inherited early in the 21st century reflects the lasting influence Robinson has had upon it, a culmination of years of work as writer, a mapmaker, a professor, and a leader.  Many in the geography discipline have written to attest to this legacy in recent years.  Robinson, born in 1915, entered into geography with a background in history and art; his father was a history professor and published several books; his grandmother and sister were both artists.  Robinson majored as an undergraduate in history and pursued minors in art and geography.  As a result of this background, he engaged the subject of cartography both with words and with images.  I intend to look for an evolution in Robinson’s graphic works and texts to trace how profoundly cartography and geography changed in the second half of the twentieth century.

To better appreciate the magnitude of that change, and Robinson’s role in it, I begin by examining the discipline that Robinson stepped into prior to the war.  W.M. Davis had more or less established geographic study at Harvard as early as the late 1800’s.  The discipline had its roots, particularly in the United States, in the increasing interest in the natural sciences and economics.  These areas of research provided an expanding nation with a better means of understanding how best to locate and exploit natural resources and strengthen supply chain networks.  Davis himself was trained as a geologist and mining engineer.  In this early era, geographers attempted to understand geomorphologic processes and geologic structures by mapping their distributions, and these efforts represented early advances in qualitative mapping from field observation.  Whereas these were instances of geographers, imbedded in some cases in geology departments, actually performing analysis by mapping, much of the general-purpose maps made in the United States at this time were surveyed and compiled by engineers, and map publishers employed graphic artists without formal cartographic training to produce the maps that would be consumed by the general public.  Otherwise, geographers in this early era would, on occasion, produce maps to illustrate their writings, but they were illustrations only, and maps were seldom used for analysis.  In many cases the labor involved in drafting a map by hand might dissuade the potential mapmaker, but typically the map as a tool of analysis simply was not considered.  Cartographic innovation at this point remained firmly in the hands of the military and the federal government.  This tendency was strengthened by the involvement of the U.S. in the First World War and the subsequent peace negotiations. “To be sure, there were some geographers who did things cartographic in this period between two World Wars…but no one really thought of such activities as parts of a field of learning” (Robinson 1970, 189).  The time for cartography to become a subject of academic research had not yet arrived (Koelsch 2001, 249; Robinson 1979, 79; McMaster and McMaster 2002).

Robinson, A.H. Fig. 7 [map] In: Peattie, Roderick. Geography and Human Destiny. New York: George W. Stewart, 1940.

The involvement of geographers in the First World War spurred a new interest in human and regional geography.  “Substantial work began before the war in the delineation of “physiographic provinces” and climatic regions continued, and these often became the containers into which human phenomena were distributed” (Koelsch 2001, 258).  Roderick Peattie was an adherent to this line of inquiry, pursuing a defense a geographic determinism almost in defiance of the skepticism surrounding it.  Peattie played an important role in influencing and encouraging Robinson while Robinson completed his dissertation at Ohio State University (Morrison 2008, 232; Cook 2005, 195).  Robinson noted, “From him I learned the value of the unorthodox” (1952, viii).  In 1940, Peattie published Geography and Human Destiny, a book that features the first published original maps and charts by Robinson this author has been able to find.  Robinson financed his graduate studies in part by illustrating texts for other geographers (Morrison 2008, 232).  In this early work for Peattie’s book, we see what must be a classic example of maps serving as mere illustrations.  They offer charming, stylized depictions of terrain; hatchured mountains, shown in profile, rise above flatlands dotted to denote the sand of deserts; features are hand-lettered in a style of Robinson’s devising.  In one instance, Robinson has highlighted the Suez region amongst the generalized (and somewhat distorted) coastlines of Africa and Asia by drawing a picture of a magnifying glass, complete with shading, containing and “magnifying” the region in question.  The graphic style and artistic license taken with the subject is enjoyable to look at, but it is hard to imagine maps of this kind being placed in a scholarly work in geography today.  The maps emphasize physical features and depictions of distances from place to place, but human features are notably lacking for a book that places humans at the center of the study.  This may not be surprising given Peattie’s deterministic bent.  Mountains and deserts, amongst other features, weigh heavily in Peattie’s assessments of how and why civilizations formed where they did.  Peattie’s writings reflect a particular mindset and geographic method prevalent in geographic departments in the years prior to WWII, and Robinson’s drawings, though nicely done, reflect graphically this soon to be outdated way of engaging with geography (Peattie 1940).

Robinson’s renderings in Geography and Human Destiny, if flawed under the lens of rigorous cartographic technique, might be forgiven based on his formal education on the subject up to that point.  Discussing his education, Robinson, referring to himself in the third person, wrote, “The author took the only course in cartography available to him in 1937; it must have been fairly typical of the few being offered in America: lectures based largely on personal experiences were supplemented by a relatively few assigned readings, and by Deetz and Adam’s Elements of Map Projection.  No textbook was used because there was none in English” (Robinson 1970, 189).  His undergraduate minor in art had probably better served him in his map illustration work than had the cartography course.  With what experience he had at that point, Robinson was hired by Richard Hartshorne (a friend of Roderick Peattie’s) in 1941 to aid the Office of Strategic Services Geography Division.  Specifically, he was charged with organizing a Map Section within the Geography Division.  Considering that the Geography Division was merely another division of the Research and Analysis Branch within the OSS (which would eventually become the CIA, after the war), one can begin to imagine the Byzantine proportions this office was quickly assuming as the nation prepared for war.

The next four years would be Robinson’s sometimes-grueling education in cartography.  Continuously producing maps for a massive war effort provided ample opportunities for frustration and self-doubt.  “The greatest cause for concern, never completely out of mind, was that we were never really confident that we were doing the right thing, both technically and conceptually” (Robinson 1979, 98).  Solutions to the various problems that frequently arose were typically worked out in-house.  Importantly, map products produced by the Map Division varied from traditional terrain-feature maps that might be used by commanders on the battlefield, as these were produced by the Topographic Branch of the Military Intelligence Service (Stone 1979, 91).  More often the Map Division of the OSS was responsible for producing a great number of thematic maps conveying specific geographic concepts to war planners and policy officials.  The war effort had created an intense demand for the rapid production of thematic maps that had not existed prior to the war.  Kirk Stone summarized the working environment within the Geography Division of the OSS as follows: “The major requirements of the geographer were to cooperate under the stresses of time restrictions and inadequate data in the preparation of common-language analyses” (1979, 91).

Robinson’s deep uncertainties regarding relative accuracy of the information reflected in these maps would serve as the inspiration for the career that would soon follow in peacetime.  His experience supervising the effort would also grant him an appreciation for the varieties of expertise that cartography required.  Among the Map Division staff, engineers and graphic artists knew how to manipulate the tools to draw the maps, but did not understand geographic concepts crucial to thematic mapping.  The social scientists and researchers, on the other hand, understood their material but not the means in which those phenomena related spatially, much less how to convey those interrelationships graphically.  In this way, Robinson developed a sense that improving cartographic technique to serve the new geography that was emerging would require pulling research and methods from fields and professions outside of academic geography.  In writing about the great changes that occurred during this time, Robinson also stresses the technological advances in map reproduction that facilitated the faster printing of maps from a wider variety of drafting media (Robinson, Morrison, and Muehrcke 1977, 4).  But more importantly, the conceptual underpinnings for advancing the study of cartography had been established (Robinson 1979).

Fig. 1 [map]. In: Robinson, A.H. "A Method for Producing Shaded Relief from Areal Slope Data." Annals of the Association of American Geographers 36 (1946): 248-252.

Robinson understood his chosen subject to be unorthodox, but remained undeterred to pursue it.  He would continue to work with Hartshorne, taking a teaching position at the University of Wisconsin, Madison shortly after the war.  Hartshorne brought Robinson in with the express purpose of founding a cartographic curriculum.  Simultaneously, Robinson resumed his Ph.D. work at Ohio State, flush with ideas from experiences earned during his years at the OSS.  A brief paper by Robinson published in 1946 in the Annals of the Association of American Geographers, “A Method for Producing Shaded Relief From Areal Slope Data,” serves as an early example of his work in this period.  Robinson introduced an experimental relief shading technique that allows slope data quantities to be recovered from a given unit area of the map.  At the onset, he noted important past innovations in depicting surface relief through contour, yet asserted that no techniques had since been developed that allowed numerical values of slope to be determined from the map, stating, “slope has been indicated impressionistically rather than precisely” (Robinson 1946, 248).  Six years after completing the illustrations for Peattie, with their impressionistic relief, Robinson identified an “increase of interest in the problem of landform portrayal brought about by the war” (ibid. 1946, 249).  It is clear that different uses require different maps; a map from a children’s atlas would not be taken into a wartime planning room.  But the war had introduced by its conclusion a whole new set of parameters in which geographers could operate in, and new mapping problems for cartographers to solve.  Robinson included in the paper a hand-drawn map to exhibit the experimental technique.  Quantities of dots representing slope quantities were painstakingly placed to create landform continuity from one unit area to the next.  Concerned with how this hand-drawn map would appear once reproduced, Robinson referenced a technical bulletin published by the Lithographic Technical Foundation that summarizes the relationship between printed dot density and perceived halftone effects—an early indicator of the type of cross-disciplinary research Robinson was embarking upon.

In keeping with his desire to look outside of geography for answers to cartographic problems, he sought the expertise of art professors at Ohio State to aid him in understanding visual design principles (Robinson 1952, viii).  And of course, his geography professors supported and encouraged his pursuit, among them Guy-Harold Smith, widely regarded at the time for his own cartographic work (Brown 1978, 115).  By 1949 his dissertation, “Foundations of Cartographic Methodology,” had at last been completed, providing the basis for The Look of Maps.  Many working in cartographic visualization today still view The Look of Maps as a greatly influential work, a monograph that essentially launched the investigation of the inner workings of maps with experimental scientific methods (Monmonier 1991, 27).  Its selected bibliography is sprinkled with scholarly works in applied psychology, color studies, visual design, and printing technology, in addition to a seemingly exhaustive survey of the available related research in geographic journals.  Robinson readily acknowledged that the work served mainly as an introduction to subsequent studies, indicating that much work remained to be done to address the cartographic problems identified.  The book seeks to define cartographic technique, its visual properties, and discusses these components in detail: lettering, structure and design, and color.  Importantly, Robinson identified how the intellectual meaning of a map is lost if the cartographer does not execute proper graphic techniques, and warns against an over-reliance on stale cartographic conventions over innovative approaches that better serve the map purpose at hand.  Cartographers should critically assess their maps and techniques, and consider how their readers will either interpret or misinterpret the graphic information.  This identification of the role of the map-reader in the process would become a major source of inquiry in the years to come.

If The Look of Maps served as a call to action for deeper inquiry into the way maps work, Robinson’s textbook Elements of Cartography (1953) offered assistance in preparing students to perform the inquiry.  As noted earlier, no comparable text existed in English prior to 1938, the year Erwin Raisz published his text, General Cartography.  Until Elements appeared, Raisz’s text was the sole text available, and Robinson complimented Raisz’s many contributions to cartography in his obituary for Raisz, published in 1970.  Discussing Raisz’s work, Robinson wrote, “His cartographic interests were catholic and ranged from the history of cartography, to projections, to especially landform drawing.  He illustrated his own writings lavishly and his architectural and engineering training was evident in the clarity and precision of his drawings” (1970, 190).  Indeed, Raisz’s illustrations in General Cartography are particularly exquisite, representing a level of skill that one could easily spend years attempting to attain.  The artist in Robinson couldn’t help but praise Raisz’s unrivalled draftsmanship.  Such emphases on drafting skills and the proper handling of drawing media were less and less of a concern as Robinson assembled Elements of Cartography.  Raisz had done much to fill a void in geographic education, but Robinson’s text would vary markedly from his predecessor’s.  It addressed the changes that were occurring in geography and cartography.  Of course, it incorporated the latest post-war technological advances that promised to make obsolete hand-drawn methods, but more importantly, it carried within it the philosophies Robinson had developed since the war and elaborated upon in The Look of Maps (Morrison 2008, 236).  A quote taken from the first edition dust cover encapsulates this: “Presents cartography as an intellectual art and science rather than as a sterile system of drafting and drawing procedures” (Tyner 2005, 7).  The cartography student, increasingly freed from the burdens of traditional landform drawing and hand-lettering techniques and able to incorporate larger amounts of data about the world, could now devote more effort in expressing complex geo-spatial relationships in more effective ways.

The idea of the cartography student was, for the most part, a novel one in the fifties.  This is widely regarded as the time when cartography as an academic discipline came into its own in the United States.  Robinson was a central figure in this development, and Elements of Cartography served as a key component in his development and implementation of a cartographic curriculum.  The University of Wisconsin, Madison began awarding degrees in cartography for the first time, both at the baccalaureate and master’s level; Ph.D.s were awarded as geography Ph.D.s with a specialization in cartography.  Hartshorne’s vision of establishing a cartography curriculum after the war had been fully realized.  Other programs across the country followed suit, chief among them the University of Kansas and the University of Washington (McMaster and McMaster 2002, 311).

Fig. 7 [map] In: Robinson, A.H. "Mapping the Correspondence of Isarithic Maps." Annals of the Association of American Geographers 54 (1962): 414-425.

Robinson and his students began exploring applications for cartographic research in this broadening field.  In keeping with the quantitative revolution sweeping through the social sciences, one area of interest for Robinson was the improved mapping of statistical phenomena.  An example of this work is a 1962 paper, “Mapping the Correspondence of Isarithmic Maps.”  It is one of several published during the late 1950s and early 1960s in which the Great Plains region serves as a study area for the experimenting with the isarithmic portrayal of statistical data.  In this particular work, Robinson, aided by Mei-Ling Hsu (at this time a research assistant) explored the correlation between precipitation and rural farm population density.  Though a basic correlation between these variables might be arrived at fairly quickly (more farmers locate their farms where rain is more prevalent), Robinson was interested in testing methods that would allow for finer-grained and more representative results.  The accompanying maps, stripped of all but the most essential information, reveal the statistical surfaces charted in isarithmic lines, offering clues of causality rooted to geographic location, certified through thorough testing.  In viewing the graphic portrayal of the findings we see clues of the changing nature of geography.  The “regions” of high positive correlation or low correlation drawn across the maps are not actual, observable entities, like surface elevation.  They are detailed statistical surfaces whose contours are only map-able because of the greater quantities of numeric data that have become available.  Later, a book co-authored by Hsu (now a Ph.D.) and Robinson, Fidelity of Isopleth Maps (1970) took the investigation even further, testing this method of mapping with entirely hypothetical and controlled surfaces.  Improvements in rudimentary computer plotting methods at the University of Wisconsin’s Cartographic Laboratory greatly expanded the number of detailed plates the authors could include in the study.  It allowed them, in a more reasonable amount of time, to make visible the variables involved in skewing the appearance of these statistical surfaces.  Not content to merely plot numbers on a map and connect them, the authors probed deeper, questioning the validity of the graphic information, tracing ways that we can be as much mislead by inaccurate methods as informed by properly executed methods.  The results of the analysis, portrayed in graphic form as a large series of plates, make this phenomena visible to the reader in a way that is difficult, if not impossible, to express in words (Hsu and Robinson 1970).  Interestingly, Robinson never claimed a solid foundation as a statistician, yet aided the field of analytical cartography with his strong visual communication abilities, and his willingness to encourage his students, like Hsu, to pursue this work (Morrison 2008, 234).

Plate 8 [maps]. In: Hsu, M.-L. and A.H. Robinson. Fidelity of Isopleth Maps. Minneapolis: University of Minnesota Press, 1970.

An art underlies even the most seemingly scientific visual representations.  A recurring theme in Robinson’s work was tempering the art in graphic communication with the rigor of the geographic method, making a cartography whose “beauty” derived from the truths it could reveal versus the pictorial ornamentation associated with past traditions.  Though Robinson first wrestled with these ideas most thoroughly in The Look of Maps, it was his work in developing a new projection for the Rand McNally corporation in 1963 that offered him an opportunity to engage with the art and science interface of cartography on a fundamental level.  The resulting projection is typically referred to as the Robinson Projection, though Robinson called it the Orthophanic, or “right-appearing.”  The appearance of the landmasses drawn upon this graticule was a key consideration.  Robinson’s method is notable because he sought first to visually convey to the map-reader important aspects of the earth’s coordinate system and the distribution of landmasses, and then develop the mathematical underpinnings to the grid to support that portrayal.  Most projections developed in years prior had their mathematical transformations performed first, seeking to first maintain equivalence (equal-area) or conformality (angles-at-points) without regard to the shearing or areal distortion that would result.  In contrast, Robinson’s pseudo-cylindrical projection did not maintain conformality nor equivalence, but sought a compromise that would suit Rand McNally’s specific criteria, chief among them, a depiction of landmasses that did not excessively distort shape nor size, and therefore would be appropriate for users of all ages.  In deliberately choosing the “best” appearance, Robinson had to make somewhat subjective choices.  As he later wrote regarding this process, “In a very real sense, the approach is essentially “artistic” in that the resulting projection is an interpretation distilled from the experience of the author” (Robinson 1974, 150).  He also noted in this discussion that, in an ideal situation, the best appearance of a projection would not be left to the discretion of the cartographer, but would be arrived at through an analysis of how a variety of map-readers perceived alternate solutions, and choosing the best average solution from those results.  At the time of its development, this analysis was not feasible, and as result, Robinson would have to weigh in, applying his values and experience as a cartographer to make the final decisions.  In this sense, the development of the Orthophanic projection is a reminder that, “cartography will continue to be an art as well as a science” (Robinson 1959, 460).

Fig 3. [map]. In: Robinson, A.H. "A New Map Projection: Its Development and Characteristics." International Yearbook of Cartography 14 (1974): 145-155.

The projection was completed in 1963, but Robinson did not write his analysis of it until 1974, when the computers at the UW Cartographic Laboratory allowed the angular distortions introduced by the projection to be better calculated (Robinson 1974, 147).  Concurrently during the first half of the 1970s, Robinson collaborated with another former student, Barbara Bartz Petchenik, to compile a series of essays that would become the book The Nature of Maps (1976).  In many ways, this work can be viewed as a defining culmination of much of Robinson’s intellectual pursuits.  Where The Look of Maps called for a deeper inquiry into the way maps work, and Elements of Cartography, continuously updated and revised, sought to prepare students for research in cartography, The Nature of Maps argued for the establishment of a general theory of cartography, incorporating the strides made since The Look of Maps was published, but again serving as a sort of introduction, this time to the idea of cartographic theory (Robinson and Petchenik 1976, ix).  As has been noted earlier, The Look of Maps identified the role of the map-reader in the process of map communication.  Robinson’s sensitivity to this important component made him wish he could have shown various versions of his projection to a variety of users to gauge their perceptions of the resulting landmass portrayals.  Research of this nature, referred to in the preface of The Nature of Maps as “psychophysical investigation,” was gaining in popularity amongst cartographers at this time.  Robinson characterized psychophysical investigation thus: “(I)n determining the appropriate rules for the varying sizes of cartographic symbols…the establishment of the scales is accomplished “scientifically” through a testing procedure designed to ascertain the average or standard reactions to graphic stimuli of the group for which the specification is desired” (Robinson 1974, 150).  This represented one aspect of improving “practical information transmission,” the other being the critical comparison of different maps for their effectiveness.  In addition to addressing concerns of practical application, Robinson and Petchenik also sought to address comprehensive theory through metacartography, or the study of communication by means of maps (1976, ix).

Viewed in total, this work represents a foray into deep philosophical territory, raising questions that may yet be unanswered. Since its publication, several observers have weighed in on the intellectual climate of American cartography in the late 1970s; a review of their comments reaffirms that The Nature of Maps occupied a central position in it.  When asked what aspects of Robinson’s research most influenced her career, Dr. Judy Olson replied, “In my graduate student days it was his work with quantitative methods, his work with thematic maps and map design, and his overall command of the field, especially his textbook.  I took a research seminar from him in which I did research with human subjects that was very influential on my work over the years” (Coolidge, 2008).  A psychophysical paradigm emerged from the many investigations that had been undertaken at that point.  Monmonier notes, “During the 1960s and 1970s, some doctoral students and other researchers embraced the psychophysical paradigm and, in an often-vain attempt to fine-tune the scaling of symbols on statistical maps, tried to adapt to cartographic design the subject-testing procedures of experimental perceptual psychology” (1991, 27).  The other paradigm put forward in The Nature of Maps was the communication paradigm, the attempt to establish a metacartographic theory of map communication, but as Joel Morrison notes, major changes in cartography were about to occur: “Following closely on the experiments of the psychophysics of map symbols was the reassessment of the basic paradigm of cartography.  From a static portrayal of data, the map became recognized as a communication medium.  Although the communication paradigm was readily accepted, it also fell victim to the computer revolution in cartography” (2008, 234).

Robinson was poised, by 1980, to finally step aside after three very busy decades and fully retire from his teaching position at UW Madison.  In a 1977 paper written with Morrison and Phillip Muehrcke, Robinson took an opportunity to speculate on the future of American cartography.  What was clear was that accelerating advances in computer technology were about to change the cartographic discipline in major ways, just as the discipline was grappling with the philosophical questions reflected in The Nature of Maps.  “Cartography during 1950-1975 has seen profound changes.  A completely new technology has become available and new conceptual attitudes toward its methodology have evolved.  It is inconceivable, of course, but even if no new technological innovations occurred in the next 25 years, the field of cartography would still be taxed in its efforts to utilize the technology of 1975 to full advantage and to develop a sound conceptual view of itself” (Robinson, Morrison, and Muehrcke 1977, 17).  The struggles within the discipline to keep pace with the desktop mapping revolution certainly shifted the focus of inquiry away from the communication paradigm; 31 years later, Morrison hopes, “that these bodies of inquiry will reappear as electronic technology is finally totally embedded in the cartographer’s bag of techniques” (2008, 234).  There has been some concern that the profession Robinson helped create might be undermined by the proliferation of desktop mapping, which has put mapping tools in the hands of many, versus a few highly trained individuals.  In response to a question regarding what may lie ahead for academic cartography, Olson says,

Cartography will be around for a long time regardless of what it might be called.  Visions of its demise are sometimes tied to definitions or terminology that are outdated.  As a term and as a professional orientation, I think it has enjoyed a bit of a comeback after some GISystems dominance for a while.  The emphasis on GISci, rather than GISystems in the last 15 years or so, has promoted recognition of the roles of many different fields in the whole enterprise and has focused attention on the intellectual/social/user side of things and not just on the technology.  Cartography is part of the milieu. (Coolidge 2008)

Just as Robinson set out to present cartography as an intellectual art and science in his textbook Elements of Cartography in the early 1950s, shifting the focus away from one centered primarily on drawing tools and drafting techniques, cartographic education today can return to the intellectual underpinnings of what maps are and their potential optimization, and be less focused on technical software and hardware problems.  In 2005, another former Robinson student, Gerald Fremlin, self-published a revision of a monograph co-written with Robinson called Maps as Mediated Seeing, and offered this rather humorous product description on the website that hints at a return to engaging with cartography this way: “Your GIS maps flap, but don’t fly.  Flap/flop.  The cartography course you squeaked through was Mickey Mouse.  Maps as Mediated Seeing offers salvation.  Read.  Become a born-again cartographer” (Trafford 2007).

Robinson remained actively engaged in writing from his retirement in 1980 until he died, in 2004.  Shortly after retiring he finally had an opportunity to invest more effort in a subject that had been of interest throughout his career, that of the history of cartography.  Olson notes, “the history of cartography course that I took from him has delightfully enriched my appreciation not only of the past but of the significance of developments taking place in current times” (Coolidge 2008).  In 1982, materials culled from his history of cartography courses and a variety of papers on the subject published throughout his career were published in Early Thematic Mapping in the History of Cartography, followed in 1987 by Cartographical Innovations: An International Handbook of Mapping Terms to 1900, co-written with Helen Wallis.  “Historical inquiry, integral to his way of thinking, pervaded all his cartographical research, writing, and teaching” (Cook 2005, 195).  Robinson noted in the preface to Early Thematic Mapping that much of the history of cartography has tended to focus on the content of the maps—how maps depict, for example, advances in geographic knowledge during the Age of Exploration—or their aesthetic qualities (1982, ix).  This focus in the history or cartography on the basic appearances of maps without deeper inquiry into their function as scientific documents is related, in a sense, to the traditional role cartography once served prior to the war, a role which Robinson spent most of a career redefining.  The critical appraisals of past cartographic innovations included in this text, of their relative importance and impact on the field, can be seen as another contribution to a career’s work in re-imagining how the map is both composed and interpreted.

Cartography in America today is dramatically different from the field Robinson first entered prior to the Second World War.  In looking at his career within the broader context of academic geography, it could be noted that Robinson did not invent American cartography.  There were certainly projections developed and thematic maps compiled prior to Robinson’s involvement.  Nor was Robinson even the first to develop academic coursework in cartography or engage with it in the classroom.  And yet today there is a growing awareness that maps are a means of generalizing geographic phenomena, and that maps are produced by people with specific goals and agendas, and therefore cannot be viewed as purely objective snapshots of reality.  Maps, like writing, are subject to bias and error, and the map-reader can benefit from assessing the information he or she receives from a map with the same level of rigor applied to written works.  This is perhaps the most important aspect of Robinson’s legacy.  His work has helped us look at maps and mapping more critically.  With this critical foundation, cartography now serves a larger role in the making of knowledge, and as a result, it has been maintained as a vital component within the larger discipline of geography.  The student of geography can learn from Robinson’s example by keeping an open mind, employing a cross-disciplinary approach, and appreciating the lessons of the past while striking out upon new ideas and methods.

Image from McMaster, R. and S. McMaster. 2002. A History of Twentieth-Century American Cartography. Cartography and Geographic Information Science 29 (3): 305-321.

References Cited:
Brown, S.E.  1978.  Guy-Harold Smith, 1895-1976.  Annals of the Association of American Geographers 68 (1): 115-118.

Cook, K.S.  2005. Obituary: Arthur H. Robinson (1915-2004). Imago Mundi 57(2): 195-197.

Coolidge, J.  2008.  Interview with Dr. Judy Olson.  Conducted electronically, 4 April.

Hsu, M.-L. and A.H. Robinson.  1970.  Fidelity of Isopleth Maps. Minneapolis: University of Minnesota Press.

Koelsch, W.A.  2001.  Academic Geography, American Style: An Institutional Perspective. In Geography: Discipline, Profession and Subject since 1970, edited by G.S. Dunbar, 245-279.  Dordrecht: Kluwer Academic Publishers.

McMaster, R. and S. McMaster.  2002.  A History of Twentieth-Century American Cartography.  Cartography and Geographic Information Science 29 (3): 305-321.

Monmonier, M.  1991.  Cartography.  In Modern Geography: An Encyclopedic Survey, edited by G.S. Dunbar, 25-28.  New York: Garland.

Morrison, J.  2008.  Arthur H. Robinson, 1915-2004.  Annals of the Association of American Geographers 98 (1): 232-238.

Peattie, R.  1940.  Geography in Human Destiny. New York: George W. Stewart.

Raisz, E.  1938.  General Cartography. New York: McGraw-Hill.

Robinson, A.H.  1946.  A Method for Producing Shaded Relief From Areal Slope Data.  Annals of the Association of American Geographers 36 (4): 248-252.

Robinson, A.H.  1952.  The Look of Maps. Madison, Wisconsin: The University of Wisconsin Press.

Robinson, A.H.  1953.  Elements of Cartography. New York: John Wiley and Sons, Inc.

Robinson, A.H.  1959.  The Curve of the Grey Spectrum: A Review.  Annals of the Association of American Geographers 49 (4): 457-460.

Robinson, A.H.  1962.  Mapping the Correspondence of Isarithmic Maps.  Annals of the Association of American Geographers 52 (4): 414-425.

Robinson, A.H.  1970.  Erwin Josephus Raisz, 1893-1968.  Annals of the Association of American Geographers 60 (1): 189-193.

Robinson, A.H.  1974.  A New Map Projection: Its Development and Characteristics.  International Yearbook of Cartography 14: 145-155.

Robinson, A.H.  1979.  Geography and Cartography Then and Now.  Annals of the Association of American Geographers 69 (1): 97-102.

Robinson, A.H.  1982.  Early Thematic Mapping in the History of Cartography. Chicago: University of Chicago Press.

Robinson, A.H., J.L. Morrison, and P.C. Muehrcke.  1977.  Cartography 1950-2000.  Transactions of the Institute of British Geographers, New Series 2 (1): 3-18.

Robinson, A.H. and B.B. Petchenik.  1976.  The Nature of Maps. Chicago: University of Chicago Press.

Stone, K.H.  1979.  Geography’s Wartime Service.  Annals of the Association of American Geographers 69 (1): 89-96.

Trafford Publishing.  2007.  Maps as Mediated Seeing: Fundamentals of Cartography revised edition. (accessed March 25, 2008).

Tyner, J.  2005.  Elements of Cartography: Tracing fifty years of academic cartography.  Cartographic Perspectives 51: 4-13.

2 Comments leave one →
  1. Osaheni Arthur permalink
    July 30, 2014 5:48 pm

    Awesome work sir.I cannot begin to express to you,how important and good your contribution to Cartography is.For a newbee like me,it is invaluable to understand that we continue to represent our world in a transparent and honest light.Cartography is unique in this regard,and i am constantly thrilled,surprised,amazed and heartened by all practitioners(like yourself).So far,i have not come across one who did/has not made me proud.
    I salute!


  1. 2010 in review, and a new website in the works « Jake Coolidge – Geography & Cartography, Art & Sound

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: